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1. Phys. A: Math. Gen. 27 (1994) 7805-7810. Prinled in the UK 

Quantum deformed Poincar6 algebra on a two-dimensional 
lattice 

Cesar Gomeztt, Henri Rueggt and Philippe Zauggg 
Departement de Physique Th6orique. Universite de Gen2ve. 32. bd d‘Yvoy, CH-1211 
Genhve 4, Switzerland 

Received 5 July 1994. in final form 26 September 1994 

Abstract We propose a definition of a Poincad algebra for a two-dimensional spacetime with 
one discrenzed dimension. This algebra has the structure of a Hopf algebra. We use the link 
between Onsager’s miformimion of the king model and the dispersion relation of a free pmiicle 
in this spacetime, together with the rapidity representation of the quantum deformation of lhe 
Poincar6 enveloping algebra. 

1. Lattice Poinear6 algebra 

Lattice generalizations of Poincar6 or inhomogeneous Lorentz invariance have been 
proposed in the context of two-dimensional integrable models [ 1,2]. These works were 
inspired by Onsager’s solution of the king model [3] and Baxter’s definition of the corner 
transfer matrix [4]. 

Onsager’s solution to the k ing  model provides a natural way of associating a continuous 
rapidity to a free massive fermion positioned in a discrete two-dimensional spacetime. In 
fact, mapping the lattice spacing a,,a, [2]  into the king couplings H and H’, H* being 
the dual of H [3], 

sinh 2H’sinh 2H’ = - 2sinh(H’ - H’) = wax (1.1) (3 
and defining 

y = p a ,  w =  Ea, (1.2) 

we get, from Onsager’s hypergeometric relation, 

coshy = cosh2Hfcosh2H* -sinhZH‘sinhZH*cosw (1.3) 

the lattice dispersion relation 

(1.4) 1 2 2 2  a:(cosh pa, - 1) + a:(cos Ea, - 1) = ~p Q, Q,. 
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Now, using Onsager’s uniformization of equation (1.3), we get the desired rapidity for 
free pnrticles moving in a discrete two-dimensional spacetime. For fixed king couplings 
H ,  H‘, the Onsager parameters CY and U are defined by the following unifonization relations 
in terms of Jacobi elliptic functions: 

sinli2H’ = -isn(iulk2) 

sinh2H’ = -iksn(iulk2) 

sinh y = -i- sn(iu lkz) I - k 2  
M 

(1.5) 

I - k 2  
sinu = - sn(a lk2) 

M 

with the notation 

M = dn(iulkz) dn(orlk2) + kcn(iulk2) cn(alkz). (1.6) 

The elliptic modulus k is defined by the king integrability relation 

sinh 2H’ 
sinh 2H‘ 

k =  , 

and for H’ > H”, k < 1. As usual, integrability means the commutativity of the transfer 
matrix for two different values of the parameter CY. which turns out to be the rapidity. 

To show this, we introduce the substitution (1.1) into (1.5) and obtain the following 
relation for the elliptic variables U and k in terms of the lattice variables a,,a,: 

In the continuum limit where both a,.a, + 0, and therefore k -+ 1 ,  equations ( 1 . 3 ,  
together with (1,5), become 

p = pcoshor E = p s i n h a  (1.9) 

which shows that CY is the rapidity, with the mass shell condition p 2  - E2 = p2 (although 
E and p are usually interchanged). This suggests that we define a boost generator N by 

(1.10) 
a 
aa 

N=--. 

Relations (1.9) can be obtained as solutions to the differential equations 

(1.11) 
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which are equivalent to the standard two-dimensional PoincarC algebra jn  the continuum 

[N, PI = E [N, E ]  = P [ E ,  PI = 0 (1.12) 

once we use the rapidity representation (1.10) for the boost generator. 
In order to define the lattice generalization of the two-dimensional PoincarC algebra, we 

should modify algebra (1.12) in such a way that the lattice rapidity reprisentation obtained 
using Onsager's uniformization (1.5) now appears as a solution to the differential equations 
defined by the modified algebra. 

In this 'paper we prove that at least for a discrete space and la continuous time 
(ar + 0), the lattice generalization of (1.12) is a Hopf algebra possessing an asymmetric 
comultiplication for N and E .  

2. From lattice Poinear6 to quantum Poinear6 algebra 

A quantum deformation of the Poincar.4 algebra was introduced in [5,6].  
dimensions, the K-Poincard algebra US(Pz) is defined by the commutation relations 

For two 

" r 

K 
[ N .  PI = E [ N ,  El = K sinh - [ E ,  PI = 0 : (2.1) 

with K E R. Introducing a rapidity 7. we obtain, from (7..1), 

It is now easy to prove that the semi-continuous limit a, + 0 of equations (1.5) defines a 
solution to equations (2.2). In fact, solving (2.2), we obtain [7] 

(2.3) 
P(7) 2 ~ s i n h -  =+nc(KL'vlKZ) E ( p )  = +SC(KL'yIKZ) 
2K 

with elliptic modulus 

On the other hand, taking the at + 0 limit of ( lS) ,  we obtain 

1-k2 1 a, 1 - k Z  sna: 
sinh y = - sinw- Ea, = -- 

k cna:+dno! a, k cnu+dnd!  

whereby 

1 I - k Z  ma: 
a, k c n u + d n a :  

E = - - -  

(2.4) 

By performing a Landen transformation [SI we can identify (2.3) and (2.5). provided 

(2.7) 
1 

&u=q and a, = -. 
K 
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Therefore, we conclude that in the semi-continuous limit, the two-dimensional lattice 
Poincar6 algebra is defined by quantum deformation @I) ,  with the deformation parameter 
K being determined by the lattice spacing. As an extra piece of evidence, notice that lattice 
dispersion relation (1.4) becomes, in the a, -+ 0 limit, the Casimir operator 

P 2  2 c = ( 2 K  sinh z;;) - E = p2 

of the quantum Poincar6 algebra (2.1). 
In the continuum limit ax + 0 (i.e. K + CO), the elliptic parameter k becomes 1 (see 

(l.8)), which implies H' = H' in (1.7), i.e. T = 7''. Hence K measures the departure from 
criticality. 

Algebra (2.1) can be promoted to a Hopf algebra by the following comultiplication 
rules: 

A P =  P @ I  + I @  P 

A E  = E  @eP/& + e- 'I2* @ E 

A N  = N @epi& +e-'{& @ N 

and antipode 

S ( P )  = -P S(E) = -E S(N) = -N + E J k  (2.10) 

as well as  a trivial co-unit E ( X )  = 0 for X = P, E ,  N. An interesting feature is that, for 
finite lattice spacing, the comultiplications for E and N are asymmetric. 

According to (2.9), the total energy and momentum for a system of two particles is 
given by 

P' = PI + P2 E' = EleP1m + e-p1/"E2 (2.11) 

satisfying the relation following from Casimir operator (2.8) 

P' 
cst = ( 2 K  sinb g) - (E')'. (2.12) 

It should be noted that the comultiplication (2.9) is not unique. Algebra (2.1) is 
compatible with a symmetric comultiplication which is additive for E, non-additive for 
P and complicated for N [9]. 

3. Final comments 

The main goal of this paper is to provide a definition of the lattice Poincar6 algebra in 
terms of well defined differential operators. The main tool that we have used, inspired by 
integrable models, is the introduction of a continuous but elliptic rapidity that will translate 
the lattice information into an elliptic parameter. More precisely, the steps followed in 
defining this algebra were: 

(i) the uniformization of the lattice dispersion relation, for a free massive particle, by 
means of Onsager's uniformization of the king model (the k ing  model was used simply 
because of its equivalence to a free fermionic system); 
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(ii) the representation of the boost generator of the Poincar6 algebra as a derivative 
with respect to the rapidity variable, which is identified with the elliptic uniformization 
parameter; and 

(iii) the integration, using the elliptic rapidity, of the lattice dispersion relation (1.4) 
in the semi-continuum limit. In this way, we arrive at equations (2.2), which define the 
quantum Poincark algebra introduced in 1561. In this algebra, the only memory of its lattice 
origin is relation (2.7) between the quantum deformation parameter and the lattice spacing. 

The unexpected outcome of this exercise, which was performed on the basis of one-body 
information, is the kinematical implication for the many-body dynamics which is encoded 
in the Hopf algebra structure (comultiplication rules) of the quantum (lattice) Poincar6 
algebra. The non-triviality of the comultiplication rules directly derives from the non-trivial 
topology of the rapidity space, i.e. we have lost two conformal Killing vectors. The situation 
is somewhat similar to the standard analogy between quantum SU(2) and the asymmetric 
top. 

The physical meaning of the comultiplication rules becomes more complicated when 
dealing with a free system. In general, in order to define the free Hamiltonian for n 
particles, we just add n free one-body Hamiltonians, which is equivalent to assuming 
trivial comultiplication rules for kinematical observables. Therefore, we observe that the 
quantum deformation of any kinematical symmetry requires the existence of some non-local 
interactions to account for the non-trivial comultiplication. 

There are two physical questions that deserve some attention at this point. The first 
concerns the interplay between integrability and lattice kinematics, interpreted in the way 
proposed in this paper. For an integrable model in the elliptic regime, we can always try 
to define an associated Poincark algebra where the rapidity is the uniformization parameter 
and the boost generator corresponds to the corner transfer matrix. From this kinematical 
point of view, integrability becomes equivalent to the relativity principle. i.e. the physics is 
the same for two observers related by a boost, which corresponds to the commutativity of 
the transfer matrices for two different values of the uniformization parameter. The Poincar6 
algebra so obtained is very likely to be quantum deformed with the quantum deformation 
parameter being determined by the integrability constants (the parameters determining the 
integrability manifold in the space of couplings) of the model. It would be very interesting, 
if the previous picture is correct, to find the physical interpretation of the comultiplication 
rules in this context. It should be noted that a lattice Poincar6 algebra was previously 
defined [I, 21 for integrable models using an infinite set of conserved charges. In the lattice 
Poincar6 algebra considered here, we play with only three generators but are forced to work, 
as is customary for quantum deformations, with the enveloping algebra. 

The second question concerns the interpretation of the quantum Poincar€ algebra as 
a lattice regularization. From the two-dimensional semi-continuous case studied here, we 
learn that the lattice spacing transmutes into a quantum deformation parameter, automatically 
modifying the comultiplication rules. A possible physical picture for understanding this 
phenomenon is to interpret the non-trivial comultiplication rules as a way of formally 
saving the conservation laws lost when postulating a fundamental length. An interesting 
exercise in this direction would be to derive, from the deformed Poincark algebra and for 
two-dimensional models, the germ (i.e. the Mobius part) of a deformed conformal algebra 
useful away from criticality. 

To conclude, we wish to point out that perhaps the most pragmatic and useful approach 
to quantum deformed kinematics is to interpret it  as a subtle form of lattice regularization. 
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